On LLM-Assisted Generation of
Smart Contracts from Business Processes

Fabian Stiehle!, Hans Weytjens', and Ingo Weber!»?

L Technical University of Munich, School of CIT, Germany, first.last@tum.de
2 Fraunhofer Gesellschaft, Munich, Germany

Abstract. Large language models (LLMs) have changed the reality of how
software is produced. Within the wider software engineering community,
among many other purposes, they are explored for code generation use cases
from different types of input. In this work, we present an exploratory study to
investigate the use of LLMs for generating smart contract code from business
process descriptions, an idea that has emerged in recent literature to overcome
the limitations of traditional rule-based code generation approaches. However,
current LLM-based work evaluates generated code on small samples, relying on
manual inspection, or testing whether code compiles but ignoring correct exe-
cution. With this work, we introduce an automated evaluation framework and
provide empirical data from larger data sets of process models. We test LLMs
of different types and sizes in their capabilities of achieving important proper-
ties of process execution, including enforcing process flow, resource allocation,
and data-based conditions. Our results show that LLM performance falls short
of the perfect reliability required for smart contract development. We suggest
future work to explore responsible LLM integrations in existing tools for code
generation to ensure more reliable output. Our benchmarking framework can
serve as a foundation for developing and evaluating such integrations.

Keywords: Blockchain, Process Execution, Process Enactment, Workflow,
Large language models, Generative Al

1 Introduction

In many fields, LLMs are envisioned to assist in a wide variety of tasks, where so
far the training of general machine learning models has been challenging due to the
scarcity of specialized data and the large computational effort required (c.f., [4I842]).

In the wider field of software engineering, LLMs are anticipated to support all
phases of the software engineering process [4]. For code generation, LLMs have
arguably made the biggest practical impact so far, testified by the integration of
commercial tools like Github’s Copilot—which builds on seminal research on LLMs
trained on code [I1]—into popular development environments like Visual Studio Code.

Similarly, within the field of business process management (BPM), Vidgof et
al. [42] call to evaluate the combination of LLMs with existing BPM technologies.
First results evaluating LLMs on BPM tasks show the large promise, since they
perform comparable to or better than existing BPM tools [I7].
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Blockchain-based business process execution relies on a model-driven paradigm,
where process descriptions are transformed into executable artefacts based on rule-
based transformation tools [39]. These tools, however, exhibit various limitations such
as in their flexibility, e.g., in terms of supported process modelling constructs, their
supported output targets, or their support of blockchain-specific features. Considering
the wider field of model-driven engineering, LLMs are similarly prospected to have
the potential to drive automation [8]. This hope can draw on seminal results from the
related field of code-to-code translation (transpilers), where LLM-based approaches
were found to outperform traditional rule-based approaches [34135].

While many positive visions exist, and early results on leveraging LLMs to assist
in code generation are impressive [7], significant challenges remain—extending even
beyond the well-known hallucination issue (or more precisely: confabulation [36]).
For instance, GitHub Copilot can introduce numerous security vulnerabilities into
generated code [32]. LLM outputs are inherently non-deterministic [30] , making them
unreliable for consistent behaviour. Meanwhile, Huang et al. [20] show that generated
code may reproduce ethically concerning biases, such as gender-related ones.

Furthermore, proprietary models raise concerns about confidentiality, privacy,
and autonomy (c.f. [4/18]). These AT models are often deployed on large, centralised
platforms provided by hyperscalers like AWS, Azure, or GCP. Open-source models
running on these platforms face the same security concerns. Relying on central deploy-
ments may not be a good fit for blockchain-based processes, where decentralisation
is a goal [3§].

Thus, it is paramount to systematically evaluate LLMs’ usefulness and fit of
properties for a given task and weigh benefits and drawbacks. Research is called to
identify the scenarios where LLMs add true value (c.f. [4/42]). However, evaluation
poses a significant challenge, as it often requires manual human investigation and
large volumes of labelled or parallel data [9].

Research on using LLMs for smart contract generation is in its infancy. Existing
work aims, among other things, to reduce the required specialised programming
skills for contract development. However, most of this work focuses on reporting the
syntactical correctness of generated code (compilability), not its functional correct-
ness [1I25128]. In other cases, correctness is assessed through manual inspection of
small samples [TO[T5]. In the case of blockchain-based process execution, early work
explores the promise of deriving code from process descriptions, but draws conclusions
from a singular case study [I5]. Current research furthermore does not make data
or code openly accessible.

In this work, we present an exploratory study investigating the use of LLMs
to generate smart contract code from business process descriptions. We think it
paramount to ground such research in open empirical evidence from larger datasets.
Beyond standards of open science, the availability of open repeatable benchmarks and
data is especially important in the present case, as LLMs capabilities develop in a fast
pace and their output is unpredictable. With this work, we introduce an automated
evaluation framework for generating smart contract code from process models. We
provide empirical data from larger data sets of process models (165 models filtered
and sampled from the collection of SAP-SAM [37] models). We test seven LLMs
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of different types and sizes in their capabilities of achieving central properties of
blockchain-based process enactment (c.f. [39]): enforcing process flow, case data-based
conditions, resource allocation, and efficiency.

In general, our results indicate good performance of some models, with those
achieving F1 scores of 0.8 or more. Due to the stochastic nature of LLMs, output
remains imperfect and unreliable. While such performance may be acceptable in other
contexts, blockchain is an unforgiving environment—on public blockchains developers
should assume that any weakness will be exploited. As such, we believe this is a
fundamental issue of the chosen approach to have LLMs generate smart contract
code, which cannot be overcome by LLMs based on the current architectures. We
discuss this point further in the paper, including an outlook on roles LLMs could
fulfil productively in the generation of smart contracts from process models.

The remainder of the paper is structured as follows. A background on LLMs and
relevant terminology is provided in the next section; note that we assume familiarity
with blockchain and process enactment on it. Subsequently related work is discussed
in Section [3] before we present the benchmarking framework in Section [l Based on
it, we conduct experiments that we report on in Section [ and discuss in Section [f]
before Section [@ concludes.

2 Background

In this section, we give relevant background on the AI models, their attributes, and
related concepts which we use in the body of the paper. Large Language Models
(LLMs) are transformer-based neural network systems [41]. LLMs are a specific class of
Foundation Models, a class of machine learning models trained on extensive data sets,
not for one specific purpose but as a basis for many possible applications [3]. In the
case of LLMSs, training ingests very large textual corpora, comprising not only natural
language, but also programming code (such as Solidity for blockchain smart contracts),
and formal representations (such as BPMN for modeling business processes). Due
to their generality and the training input, LLMs can perform complex tasks beyond
language understanding and generation, including analyzing and creating business
process models [I9] and smart contracts [12]. Many of the latest LLMs support other
modalities (such as images, video, or audio), hence they are sometimes referred to as
large multi-modal models (LMMs). However, for this paper, the distinction between
LLMs and LMMs is of no importance, and hence for the sake of clear communication,
we follow the current common practice and refer to them as LLMs.

In many usage scenarios, LLMs deliver high performance out of the box, eliminat-
ing the need for fine-tuning or training from scratch with large supervised datasets or
significant compute resources. In zero-shot prompting, models complete tasks based
solely on instructions without prior examples, whereas few-shot prompting involves
providing a handful of illustrative examples directly within the input [14].

Tokens are the units of input and output for LLMs. Tokens can be whole words,
subwords (parts of words), individual characters, punctuation, or special charac-
ters [2]. The total number of tokens—both in the input query and the generated
output—directly influences the computational load of running these models. Models
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that perform complex reasoning (so called reasoning models) typically generate a
plan to answer a query, execute the steps in the plan, and possibly check their work;
hence they require many more tokens than regular LLMs. Increasing the model
size—measured by the number of parameters, the numeric values representing the
strength of connections between ‘“neurons’—generally improves performance but also
raises computational demands, leading to greater energy consumption [29]. Balancing
model size, token usage, and capability is therefore essential for developing efficient
and sustainable LLM-based applications.

LLMs are available in both proprietary and open-source forms [43]. Proprietary
models, such as OpenAl’s GPT and Anthropic’s Claude model families; are typically
accessed via APIs hosted by third parties. In comparison to open-source models, they
often deliver superior performance but introduce risks such as data exposure, depen-
dency on external providers, and limited transparency. In contrast, open-source models
enable self-hosting and on-premise deployment—an attractive option in blockchain
contexts where data sovereignty, trust minimization, and operational independence
are essential.

Temperature is a setting for LLMs that controls the randomness of generated
text; lower temperatures make outputs more predictable and focused (by selecting
the most probable tokens), while higher temperatures encourage more creative and
varied responses (by selecting less probable tokens).

3 Related Work

Within the field of BPM, Vidgof et al. [42] outline the opportunities and challenges
of integrating LLM-based tools within the BPM lifecycle. Recent work explores an
increasingly wide array of BPM applications (see e.g., Pfeiffer et al. [33], which explore
four real-world use cases that demonstrate the use of LLMs across modelling, predic-
tion and automation). Within predictive process monitoring, LLMs are explored for
their capability to predict future states of processes (e.g., Pasquadibisceglie et al. [31]).
In prescriptive process monitoring, LLMs are explored to enhance recommendations
with LLM-generated explanations [23].

Orthogonal to our work is the question whether LLMs can assist in deriving
accurate models from natural language process descriptions (e.g., Horner et al [19]);
for an overview see Klievtsova et al. [22]. Closer to our work, Monti et al. [26] propose
an LLM-driven pipeline to extract executable scripts (for deployment in a process
execution engine) from natural language process descriptions. For the evaluation of
their code generation, they use 10 cases and compare the LLM output to a manually
implemented script. Additionally, they conducted a human evaluation, assessing the
quality of the produced code. A similar study to ours was conducted by Berti et
al. [5], which presents a benchmark on the performance of LLMs for different Process
Mining tasks, the open-ended nature of these tasks requires a LLM judge evaluation
approach, where LLMs assess the output of other LLMs.

Research on LLM-assisted smart contract generation is in its infancy. Exist-
ing results are limited to reporting the syntactical correctness of generated code
(compilability) and the automated detection of known vulnerabilities using existing
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tools [TI28)25]. A relevant result to our investigation is provided by Luo et al. [25];
their result suggests that augmenting the generation process by a formalised model
improves results. Some works go beyond syntactical correctness by manual inspection
of code [1015]. However, this is limited to a few simplistic cases, as it is highly labour
intensive. Karanjai et al. [2I] extract solidity functions from GitHub repositories and
use extracted code comments as prompts; to test the LLM output, they rely on
corresponding unit tests present in the mined repository.

None of the aforementioned studies on smart, contract generation make their data
or evaluation frameworks available.

Our work lies at the intersection of previously outlined fields. To the best of our
knowledge, the only directly related work is the recent case study of Gao et al. [15].
They present an approach, based on few-shot prompting, capable of generating a
smart contract from a Business Process Modeling Language (BPML) specification (a
superset of BPEL), derived from a collaboration diagram. However, their evaluation
is limited to one process, which includes start, end, and message events, tasks, and
two XOR splits. They do not make their code or data available.

To the best of our knowledge, we are the first to present an open source bench-
marking framework to automate the assessment of code generation from process
models. We provide an instantiation of it based on the large SAP-SAM data set [37],
one-shot and two-shot prompts, and a Ethereum virtual machine (EVM) environment.
Using it, we evaluate different proprietary and open source LLMs on 165 cases each.
All our data is available and our tests can be repeated (see Footnote [3)).

4 Benchmarking Framework

To assess the capabilities of LLMs for smart contract generation, we designed a
configurable benchmarking framework and make it openly available along with all
relevant input and output dataEI An open framework facilitates repeatability and
can be used to judge the capabilities of future model evolutions. We envision our
framework to also serve as a foundation for evaluation in future related research (as
outlined in Section @ In contrast to previous work, we want to facilitate automated
evaluation from large data sets with optimal coverage. An established method to
benchmark the correctness of a blockchain-based business process is to replay all
possible conforming tracesﬂ (which the smart contract has to accept) and replay a set
of non-conforming traces (which the smart contract has to reject) [39]. Our approach
makes use of this method. From a given process model, it generates conforming traces
(not always exhaustively, but up to a configurable threshold, as parallelism and loops

3 https:/ /github.com /fstichle/bpmn-sol-llm-benchmark. An archived version is available
at: https://doi.org/10.5281 /zenodo.16616694.

4 For the remainder of the paper, we use common terminology. We loosely denote an event
log as a set of events, where each event is associated with a case identifier that groups it
into a case. A trace is the ordered sequence of events (activities) that occurred for a specific
case. Each event represents a task (activity) in the model. A trace can be said to be in con-
formance with a process model if it represents a valid execution path through that model.
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Fig.1: Main components, services and data of the benchmarking framework
architecture as FMC block diagram.

can result in an intractable search space) and non-conforming traces. All traces are
then replayed against the generated smart contracts.

4.1 Architecture Overview

Figure [I] depicts an overview of our architecture. As input, different test cases can
be configured. Mainly, a test case is a tuple of: (i) the LLM to benchmark, (ii) the
prompt to use, (iii) the process model data set to use.

Interaction with the framework is achieved through a test runner. Based on user
interaction, the runner coordinates the benchmark execution with the other internal
and external components. From the model data (process models), a simulator compo-
nent generates conforming and non-conforming traces. This simulator component is
external to the framework, so it can be swapped based on different model data inputs.
The simulator is responsible for generating conforming and non-conforming event logs
from the input process models. To generate a non-conforming trace, a conforming trace
is randomly chosen and manipulated. The simulator also generates an encoding that
maps the events and participants to how they should be represented in the smart con-
tract (taskIDs and participantIDs, the latter associated with a blockchain address).

This encoding is embedded into the prompt, along with the model data, by the
LLM provider interface, which calls the external LLM provider as configured in the
test cases. The received output is stored in a usage log. For any interaction with an
LLM provider, the usage log stores (among other things): a timestamp, the configured
test case, the full input and the full output. This allows to reconstruct and rerun a
benchmark at a later time. The usage log also records usage statistics (tokens used,
price, etc.) as reported by the provider.

From the usage log output, the log replayer extracts the smart contract code,
compiles and deploys it to an external blockchain environment, and uses the encodings
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and event logs to perform a benchmark on the deployed contract. The replayer stores
the results in execution logs. The framework also extracts metadata on the used
process model (e.g, modelling constructs per model, etc.) to aid in the evaluation of
the benchmark.

4.2 Instantiation

In the current instantiation of our framework, we support BPMN 2.0 Choreographies.
This is a purely practical implementation choice, given that there is no consensus on the
best fitting modelling paradigm for blockchain-based execution (c.f. [39]) and given our
familiarity with a suitable tool. We instantiate our framework for an Ethereum virtual
machine (EVM) blockchain environment, the most widely employed environment [39].
We discuss key design decisions in the instantiation of our architecture.

Simulator. We extend the open source tool Chorpiler, first introduced in [40] with
simulation capabilities. Chorpiler transforms BPMN Choreographies to smart con-
tracts, generates non-conforming traces from conforming traces, and also generates
machine-readable encodings on how to interact with a contract. Chorpiler parses
a given Choreography into an interaction net, a special type of labelled Petri net
(see [13]), suitable to represent choreographies. We make use of this intermediate
presentation to generate conforming traces. Here, we adopt the implementation of
pmpy [6], a popular Python library for process mining, which includes a playout
functionality to generate event log traces from Petri nets. The implementation tries to
discover new conforming traces with each pass until a threshold of passes is reached.

As we also want to benchmark data-based exclusive gateways (XOR), we had
to extend the playout functionality to generate appropriate data manipulation events.
To do so, for each outgoing flow (other than the default flow), we generate a boolean
decision. During trace generation, once our algorithm encounters a decision transition,
it inserts a corresponding data event in the traceEI

Test Runner, Replayer and LLM Provider. To provide the replayer with a blockchain
environment, we use hardhat, a popular Ethereum development framework that allows
testing, deployment, and debugging of smart contracts in a locally simulated EVM en-
vironmentEI As LLM provider, we use OpenRouter, a platform that provides a unified
API across multiple language model providers. This simplifies our integration and gives
access to a broad range of state-of-the-art modelsE] We use a Node.js environment;
the test runner is implemented using Mocha, a JavaScript test frameworkﬂ

5 Chorpiler implements transactional logic as in [24]; the smart contract makes as
much progress as possible after a task is executed; i.e., data-based decisions are made
autonomously once the gateway is enabled, and the required data must be already set by
then. Thus, data events are inserted preceding any event that leads to a given gateway.

6 https:/ /hardhat.org, accessed 2025-06-12

7 https://openrouter.ai, accessed 2025-06-12

8 lhttps://www.npmjs.com, https://mochajs.org, both accessed 2025-06-12
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5 Experiment

We use the instantiation of our framework to conduct a large scale benchmarking
experiment. Our process model data is based on the SAP Signavio Academic Models
Dataset (SAP-SAM), which was initially introduced in [37]. The dataset contains
different model types created through the Academic Initiative platform from 2011
to 2021E| Thus, the dataset primarily contains process models created by students,
researchers, and teaching staff. Still, for BPMN specifically, the dataset’s properties
(distribution of modelling constructs) are in line with previous research assessing
the usage of modelling constructs from diverse sources [27]. The collection includes
4,096 BPMN 2.0 choreography models, to our knowledge, the largest collection of
choreography models accessible for research purposes.

5.1 Pre-Processing

The SAP-SAM dataset contains many non-standard compliant choreography models.
For our purposes, we can relax requirements of ownership and observability present
in the standard, as the smart contract provides global ownership and observability
(c.f. [24]) [ Furthermore, the models lack execution-relevant information for exclusive
gateways (conditions or labels from which conditions could be inferred, and default
flow markings). Thus, we pre-processed each model. When no default flow was marked,
we set the first outgoing flow to the default flow. Then, for all other outgoing flows,
we inserted a boolean condition. Furthermore, we removed any Signavio extension
elements. To reduce the size of LLM input, we also removed the BPMN 2.0 Diagram
Interchange, as it only contains additional information required to visualise the model.
Finally, we merged all start and end events, so each model contains only one, to
adhere to the implementation limitation of Chorpiler.

From these pre-processed models, we use Chorpiler to assess the syntactic sound-
ness of each model. Simply put, if Chorpiler is able to generate a contract from the
model, we consider it for our benchmark. Chorpiler supports all basic elements of
BPMN Choreographieﬂ Choreography tasks, start and end event, exclusive, event,
and parallel gateways, sub choreographies, and loops in the model. It also ignores
issues regarding ownership and observability.

After the filtering steps, 1,427 choreography models remain. We use a sample
of 165 models for our benchmark runs. In our sample, on average, each process
contains 13 participants (see footnote , six tasks, one diverging exclusive gateway,
0.1 diverging event-based gateways, and 0.2 diverging parallel gateways, among others.
The largest model in the dataset contains 24 tasks and ten gateways, respectively.

9 https://academic.signavio.com, accessed 2025-06-12

9 During our initial exploration of the dataset we encountered this issue in many models.
The problem is exacerbated by the fact that many participants share the same name
in the task bands, but are assigned different participant IDs. We hypothesise that this
occurred when a participant’s name was entered manually rather than selected from
a list of existing ones in the visual editor.

1 We use the latest alpha version (https://github.com /fstiehle/chorpiler/tree /release/v2,
accessed 2025-06-12).
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Provider =~ Model Size (B)

Open Source DeepSeek DeepSeek-V3 0324 671
Meta Llama-3.1-405b-instruct 405
Llama-3.3-70b-instruct 70

Alibaba Qwen3-235b-a22b 235

Proprietary OpenAl GPT-4.1 n/a
Anthropic Claude Sonnet 4 n/a

X AI Grok 3 n/a

Table 1: Models selected for our experiments, conducted June 11-13, 2025, using
the then-current models available through OpenRouter. Size refers to the number
of parameters in billions (B), where available.

5.2 Benchmark

Prompt. For our benchmark, we developed multiple prompts. To reduce the likelihood
of our results being tainted by a poorly performing prompt, we tested, compared,
and refined multiple versions in pre-runs, which we conducted with sets of five to
twenty process models. This allowed us to iteratively refine our prompts and test
our framework. For any pre-run, in addition to the automated tests, we manually
investigated the generated output. This led to many refinements. In summary, our
prompts moved from loosely defined (zero-shot) instructions, to (better performing)
more specific instructions on how the process model should be interpreted and the
contract generated. Through our initial tests, we arrived at a one-shot prompt. Specif-
ically, in our prompt we ask for a Solidity implementation for the given process model,
enforcing: (i) the control flow, i.e., the order of tasks, (ii) that only the respective
initiator can execute a task, and (iii) the autonomous enforcement of gateways, and
the evaluation of data-based decisionsE To gauge the effect of prompt-based training,
we test a one-shot and a two-shot variant.

Setup. We select a range of top proprietary LLMs{EI as benchmarks and compare
them to a host of open source models to evaluate to what extent hosting open source
models signifies sacrificing performance for autonomy. Table [1| provides an overview of
our benchmarked models. Figure [2] gives an overview of our benchmarking experiment
run. For our LLM selection (c.f. Table , we benchmark a one-shot and two-shot
variant of our prompt with temperature set to 0f**|on a sample of 165 process models
from our pre-processed files. For the generation of conforming process traces, we set a

12 Qur prompt also specifies that the state of the contract should be encoded using a
bitmasking technique, as it is the most efficient encoding for a token-based execution
(c.f. |I6]). This variant did, on average, not perform worse than a prompt asking for a
more naive implementation during our pre-runs.

13 Our initial run also included Google’s Gemini. However, we were not able to deactivate
the output of its reasoning process, which prevented us from reliably parsing a contract
from the output automatically.

4 Leading to quasi-deterministic (c.f. [30]) inference results. Tie breaking between tokens
of equal probabilities, floating point variability, etc. may still cause stochasticity.
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Fig. 2: Process of our benchmark experiment: We pre-process the raw model data
from the SAP-SAM dataset to receive executable process models and corresponding
traces. We use 165 models and perform requests for one and two-shot prompts, a
pair for each LLM. From this, logs are generated including the received output. All
output is compiled and deployed and benchmarked against the process traces. The
benchmark result is logged.

threshold of 2,500 traces per process. We generated and replayed 50 non-conforming
traces per process

We ran our experiment from June 11 to June 13, 2025. For some requests, we had
to perform repeated tries, as the provider connection sometimes timed out. We also
encountered a period in which OpenRouter experienced an outage. Our framework
is set up to retry failed requests on additional runs.

5.3 Results

To assess the quality of the produced output we compare usage, in terms of cost
and tokens used, as charged by OpenRouterE To assess the efficiency of the gen-
erated output, we also record gas usage. For a given process model and its generated
implementation, we classify the outcome of a trace replay accordingly.

— True Positive: Each event in a conforming trace was accepted (led to a state
change in the contract), and the whole trace led to the end event.

— Fulse Positive: A non-conforming trace was accepted as per above.

— True Negative: Any event in the non-conforming trace was rejected, or the trace
did not lead to the end event.

— Fulse Negative: A conforming trace was rejected as per above.

Using this classification framework, we calculate precision and recall per process
case, using standard formulations, and the F1 score (the harmonic mean of precision

15 For process models with loops, the threshold is a necessary upper bound. Our
non-conforming trace generation algorithm currently depends on a ground truth to
assess whether a manipulated trace is not conforming on accident. For models, where
the number of conforming traces exceeds our search threshold, non-conforming traces
that are actually conforming can be generated. These must be manually removed.

OpenRouter operates on a ’credits’ system; credits are purchased upfront, which are
then deducted per model request, according to the underlying provider’s token-based
rate. OpenRouter charges a fee (= 5% + $0.35) when loading credits., which we did not
include in our calculations (https://openrouter.ai/docs/faq, accessed 2025-06-13).

16
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Shot Model (Avg./Process) Correctness

Cost($) Tokens F1 Mac. Comp.(%)

One  grok-3-beta 0.044 10.134 0.918 100.0
claude-sonnet-4 0.046  11.442 0.862 100.0
gpt-4.1 0.028 10.326 0.797 99.4
qwen3-235b-a22b 0.009 18.444 0.648 97.0
deepseek-chat-v3-0324 0.005 10.483 0.580 99.4
llama-3.1-405b-instruct 0.010 10.259 0.475 99.4
llama-3.3-70b-instruct 0.001 10.249 0.399 90.4
Two  grok-3-beta 0.056 14.964 0.861 100.0
claude-sonnet-4 0.064 17.218 0.853 100.0
gpt-4.1 0.038 15.410 0.696 100.0
deepseek-chat-v3-0324 0.007 15.680 0.669 97.6
qwen3-235b-a22b 0.009 24.415 0.581 93.4
llama-3.1-405b-instruct 0.016 15.473 0.431 98.8
llama-3.3-70b-instruct 0.002 15.252 0.370 97.0

Table 2: Result of our benchmark run with 165 process models. We report the
average cost in US-$ (as reported by OpenRouter), and tokens used per process
model. The overall correctness is reported via the F1 macro. Compilability (Comp.)
reports on the percentage of syntactically correct generated contracts.

and recall), common metrics to assess LLM output (see e.g., [9]). In our case, F1 is
a suitable choice over metrics like accuracy, since the number of traces is unbalanced.
To assess the overall performance of each model, we calculate the macro F1 (the
average of all F1 across all cases). Our results are shown in Table |2} The most obvious
aspect is that Grok and Claude achieved F1 scores of 0.8 or more in all variants. Most of
the generated code compiled. The cost for translating a process model was on the orders
of 0.1 cents to a few cents. Interestingly, the two-shot prompt did not consistently yield
better results. As a side effect of the experiment, we observed that the framework per-
formed well in running the benchmark across the diverse set of process and Al models.

6 Discussion, Limitations & Future Work

Our results show that current LLMs can transform executable choreography models
into syntactically and functionally correct smart contracts most of the time—even
when benchmarked against a realistic and diverse dataset. While the results in terms
of F1 score shows promise, it can only serve as a point of departure for future work
exploring meaningful integrations within a smart contract generation workflow. As
mentioned earlier, blockchain is an unforgiving environment, and smart contract
vulnerabilities may become very costly. Indeed, the goal of business process execution
via smart contracts is to provide a trusted and secure decentralised platform. These
requirements would be undermined by a reckless integration of LLM capabilities.
F1 scores that do not reliably achieve 100% would not be suitable for this con-
text. Say, the approaches would be improved to achieving an average F1 score of
98%; while this would be impressive in many domains, it falls short of the perfect
reliability required for blockchain-based smart contracts. Given the financial risks
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and immutable nature of blockchain transactions, even such a 2% error rate could
lead to significant vulnerabilities or losses, making such performance inadequate for
real-world deployment. We do not see a way in which this fundamental issue could
be resolved with current LLM architectures.

However, we see ways to advance the current direction beyond using output
as-is. Future work should explore integrating LLM capabilities into existing smart
contract generation tools. For smart contract development, which demands high
security, LLM integration must rely on extensive evaluation and robust verification
of generated outcomes. This could involve using LLMs to propose code snippets or
modifications, which are then rigorously checked against formal specifications (as
we demonstrated with our framework) or verified using automated theorem provers,
before being considered. LLMs should also generate test cases or identify potential
vulnerabilities themselves, identifying common or context-depending issues in smart
contracts, augmenting existing verification processes.

Furthermore, LLMs could be used to extend the functionality of existing code
generation tools (generating new rules) by: (i) generating more flexible templates
based on specific process models, (ii) generating code snippets for edge cases not
covered by standard templates, (iii) suggesting optimisations for rules and generated
code, and (iv) assisting in translating between different smart contract languages or
blockchain platforms. Any such use would still have to be vetted in a suitable form,
but has the advantage that rule improvements and extensions are not subject to
non-determinism after being included in the code generation tools. This approach
combines the reliability and domain-specific knowledge of traditional code generation
tools with the flexibility and natural language understanding of LLMs, and hence
addresses the limitations mentioned in the introduction.

Our benchmarking framework can serve as a foundation for evaluating these future
directions, helping to assess the quality of LLM-generated code, the effectiveness of
verification methods, and benchmarking extended code generation tools. Towards this,
the capabilities of the benchmarking tool itself must be extended to, e.g., consider
other factors such as efficiency of generated code, potential biases present in the LLM,
or sustainability factors (c.f. [1§]).

Finally, some limitations apply to our performed benchmark. We experimented
with different prompts, but cannot guarantee that the selected query was optimal;
furthermore, we used the same prompt across all LLMs, which may be suboptimal.
Although we included a diverse set of LLMs, our findings should not be assumed to
generalise to all current or future LLMs.

7 Conclusions

In this work, we presented an exploratory study investigating the use of LLMs for
generating smart contract code from business process descriptions. We introduced an
automated evaluation framework and provided empirical data from a large dataset
of 165 process models. Our results show that while current LLMs can transform
executable choreography models into syntactically and functionally correct smart
contracts most of the time, achieving F1 scores of 0.8 or more for top-performing
models, this performance falls short of the perfect reliability required for smart
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contracts. Given the financial risks and immutable nature of blockchain transactions,
even small error rates could lead to significant vulnerabilities or losses. We argue that
this fundamental issue cannot be resolved with current LLM architectures. Instead,
we propose future work to explore responsible LLM integrations in existing tools for
code generation, focusing on using LLMs for verification and enhancing current code
generation tools rather than replacing them entirely. Our benchmarking framework
can serve as a foundation for developing and evaluating such integrations.

Acknowledgments. Generative Al was used to assist in the editing of the manuscript
and the implementation of the artifact. Generated output was never taken "as-is", it was
reviewed and verified by the authors.
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